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Abstract

A two level hierarchical balanced time minimizing transportation problem is con-
sidered in this paper. The whole set of source-destination links consists of two
disjoint partitions namely Level-I links and Level-II links. Some quantity of a ho-
mogeneous product is first shipped from sources to destinations by Level-I decision
maker using only Level-I links, and on its completion the Level-II decision maker
transports the remaining quantity of the product in an optimal fashion using only
Level-II links. Transportation is assumed to be done in parallel in both the levels.
The aim is to find that feasible solution for Level-I decision maker corresponding
to which the optimal feasible solution for Level-II decision maker is such that the
sum of shipment times in Level-I and Level-II is the least. To obtain the global
optimal feasible solution of this non-convex optimization problem, related balanced
time minimizing transportation problems are defined. Based upon the optimal fea-
sible solutions of these related problems, standard cost minimizing transportation
problems are constructed whose optimal feasible solutions provide various pairs for
shipment times for Level-I and Level-II decision makers. The best out of these
pairs is finally selected. Being dependent upon solutions of a finite number of bal-
anced time minimizing and cost minimizing transportation problems, the proposed
algorithm is a polynomial bound algorithm. The developed algorithm has been
implemented and tested on a variety of test problems and performance is found to
be quite encouraging.
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ing transportation problem, hierarchical optimization.
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1 Introduction

The problem discussed in this paper belongs to the class of concave mini-
mization problem (CMP). Locatelli and Thoai (Locatelli and Thoai(2000))
discussed a simplicial branch and bound algorithm for a general concave
minimization problem. In general, concave minimization problems are hard
problems except their special cases like concave minimization flow problem,
product transportation problem, freight transportation problem and time
minimizing transportation problem etc. A very brief description of these is
given below.

The general minimum concave cost flow problem (MCCFP) is known to
be NP-hard. Horst and Thoai (Horst and Thoai (1988)) proposed a finite
branch-and-bound method for solving the general minimum concave cost
flow problem in which the branching operation involves suitable integral
rectangular partitions and bounding operation calls for solving a minimum
linear cost flow problem on subnetworks.

An important class of concave minimization problem namely the min-
imum cost production transportation problem (PTP) with concave pro-
duction costs has been solved using branch-and-bound algorithm of Falk
Soland’s type (Kuno and Utsunomia (2000)). To accelerate the convergence
of the algorithm, they reinforce the bounding operation using a Langrangian
relaxation, which is a concave minimization but yields a tighter bound than
usual linear programming relaxation. Tuy et al. (Tuy et al. (1996)) gave a
polynomial algorithm for production transportation problem involving an
arbitrary fixed number of factories with concave production cost. A primal-
dual algorithm for solving a class of production transportation problem is
proposed by Kuno and Utsunomia (Kuno and Utsunomia (1996)).

Another class of concave minimization problem is freight transporta-
tion problem (FTP) (Klincewicz (1990)). In freight transportation problem
sources can ship in bulk to one or more intermediate terminals (called con-
solidation terminals) and at these terminals, shipment from many sources
can be consolidated for eventual shipment to the various destinations. Ship-
ment costs are piecewise linear concave functions of the volume shipped and
shipping via a consolidation terminal incurs a linear inventory holding cost.
Minimum cost solution of direct or indirect shipments were desired.

A very important class of concave minimization problem which has enor-
mous applications is the time minimizing transportation problem (TMTP).
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It usually arises in connection with transportation of perishable commodi-
ties that have to be distributed as quickly as possible. Many authors (Ham-
mer (1969), Garfinkel and Rao (1971), Szwarc (1971), Ahuja et al. (1994))
have contributed to this area of concave minimization problem. The prob-
lem discussed in this paper is also related to time minimizing transportation
problem. A brief description of this (TMTP) is given below.

Consider a transportation problem defined by a set I of m sources
and a set J of n destinations. In a balanced transportation problem total

availability, say
∑

i∈I
ai, matches the total demand

∑

j∈J
bj , where ai is the

availability of a homogeneous product at the source i ∈ I and bj is the re-
quirement of the same at the destination j ∈ J . For each source-destination
link (i, j) ∈ I × J, xij ≥ 0 denotes the shipment from the source i to the
destination j and tij(xij) denotes the associated shipment time defined as:

tij(xij) = tij(≥ 0), if xij > 0

= 0, otherwise.

Clearly each tij(xij) is a concave function. When the transportation from
the sources to the destinations is done in parallel, then the overall shipment
time T (X) for a feasible schedule X is defined as: T (X) = max

I×J
[tij(xij)].

Bansal and Puri (Bansal and Puri (1980)) proved that T (X) is a concave
function. The time minimizing transportation problem is modelled as:

min
X∈S

T (X)

where S is a transportation polytope defined as:

S =























∑

j∈J
xij = ai i ∈ I

X = (xij) ∈ Rmn :
∑

i∈I
xij = bj , j ∈ J

xij ≥ 0 ∀ (i, j) ∈ I × J























Special combinatorial structure of S significantly reduces the complexity of
the problem. Almost all methods for solving time minimizing transporta-
tion problem involve solving an ordinary cost minimizing transportation
problem (CMTP). As cost minimizing transportation problem is known to
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be solvable in strongly polynomial time (Tardos (1985), Tardos (1986)),
it follows that time minimizing transportation problem is also solvable in
strongly polynomial time. Solvability in strongly polynomial time means
that there exists an algorithm which solves the problem in a number of
steps that is bounded by a polynomial function of m and n only. The best
strongly polynomial running time to date for the cost minimizing trans-
portation problem is O

(

m+ n logmn (m+ n+mn logmn)
)

. This bound
is achieved by an application of a minimum cost flow algorithm of Orlin
(Orlin (1988)) to cost minimizing transportation problem. A slight im-
provement over this bound is obtained by Kleinschmidt and Schannath
(Kleinschmidt and Schannath (1995)). They proposed an algorithm for
cost minimizing transportation problem which runs in time proportional to
m logm(k + n log n) where, k is the number of feasible links. Sharma and
Sharma (Sharma and Sharma (2000)) have proposed a computationally at-
tractive O(cn̄2) dual based heuristic procedure for solving a cost minimizing
transportation problem where c is a constant and n̄ = |I| + |J |.

In the present paper, a two-level hierarchical time minimizing trans-
portation problem is considered in which all the source-destination links
are grouped in two categories viz. Level-I links and Level-II links. In
Level-I, the leader can use only Level-I links for shipment of goods from
the sources to the destinations. On the completion of shipment in Level-I,
the follower uses Level-II links optimally to transport the left-over quan-
tity. Clearly solution space for the follower in Level-II is dependent upon
the feasible shipment schedule used by the leader in the transportation of
goods in Level-I. Transportation is assumed to be done in parallel in both
the levels. Since the transportation time for the leader in the Level-I is
a concave function and that for the follower in Level-II is also a concave
function, it follows that the overall transportation time for the two level
hierarchical time minimizing transportation problem would be a concave
function. Aim is to find that feasible shipment schedule for the leader in
Level-I so that the corresponding optimal shipment schedule for the fol-
lower in Level-II is such that the overall shipment time for the two level
hierarchical time minimizing transportation problem is the least. Clearly
the two level hierarchical time minimizing transportation problem is a con-
cave minimization problem. The main difficulty of two level hierarchical
time minimizing transportation problem comes, of course, from the non-
convexity of the objective function. On the other hand, a nice structure
underlines the two level hierarchical time minimizing transportation prob-
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lem. However, due to concavity of the objective function, it turns out that
the search for an optimal solution of two level hierarchical time minimizing
transportation problem can just be restricted to the set of the vertices of
the transportation polytope. Exploiting the relation of the two level hier-
archical time minimizing transportation problem with the standard time
minimizing transportation problem, a polynomial algorithm is proposed.

To solve the above mentioned two level hierarchical time minimizing
transportation problem, first a related standard time minimizing trans-
portation problem is solved. Based upon its solution a cost minimizing
transportation problem is constructed whose optimal basic feasible solu-
tion (OBFS) yields the first feasible solution of the two level hierarchical
time minimizing transportation problem. A time minimizing transporta-
tion problem with respect to Level-II shipment time is defined. Based upon
its optimal feasible solution (OFS) a cost minimizing transportation prob-
lem is constructed whose optimal basic feasible solution yields the second
feasible solution of the two level hierarchical time minimizing transporta-
tion problem. This process of defining a time minimizing transportation
problem with respect to Level-II shipment time and constructing cost min-
imizing transportation problem based upon its optimal feasible solution
is continued to generate various feasible solutions of the two level hier-
archical time minimizing transportation problem. These solutions yield

pairs
(

TL1(·), TL2(·) : TL1(·) > TL2(·)
)

where TL1(·) and TL2(·) denote

Level-I and Level-II shipment times respectively. Later pairs of the form
(

TL1(·), TL2(·) : TL1(·) < TL2(·)
)

are also obtained by defining the time

minimizing transportation problems with respect to various successive val-
ues of TL1(·). Based upon their solutions, the cost minimizing transporta-
tion problems are constructed whose solutions provide more feasible solu-
tions of the two level hierarchical time minimizing transportation problem.

These solutions yield the pairs
(

TL1(·), TL2(·) : TL1(·) < TL2(·)
)

. Finally a

feasible solution of the two level hierarchical time minimizing transportation
problem corresponding to the minimum value of TL1(·) + TL2(·) provides a
global optimal feasible solution of the problem.

The plan of the paper is as follows: In the next section on theoretical
development, mathematical model of the two level hierarchical time mini-
mizing transportation problem is given and various results are established.
Based upon these results, an algorithm is proposed in the section 3 that
solves the two level hierarchical time minimizing transportation problem
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in a polynomial time. Numerical illustration is given in the section 4 and
section 5 contains concluding remarks.

2 Theoretical Development

The set of source-destination links in I × J is partitioned into two non-
empty disjoint sets L1 and L2 such that L1 consists of links (i, j) ∈ I × J
to be used in shipment pertaining to Level-I. Therefore, L2 = I × J\L1

represents the set of Level-II links. It is assumed that transportation is
done in parallel in both the levels. The Level-I transportation problem in
which the transportation is done using only Level-I links is mathematically
defined as:

min
Y ∈SL1

[

max
L1

(

tij(yij)
)

]

where,

SL1 :























∑

j:(i,j)∈L1

yij ≤ ai, i ∈ I

∑

i:(i,j)∈L1

yij ≤ bj , j ∈ J

yij ≥ 0,∀ (i, j) ∈ L1

For a feasible solution Y of Level-I transportation problem, the Level-II
transportation problem is defined as:

min
Z∈SL1

(Y )

[

max
L2

(

tij(zij)
)

]

where,

SL1(Y ) :























∑

j:(i,j)∈L2

zij = ai − a′i, i ∈ I

∑

i:(i,j)∈L2

zij = bj − b′j , j ∈ J

zij ≥ 0, ∀ (i, j) ∈ L2

and a′i =
∑

j:(i,j)∈L1

yij is the quantity shipped from ith source and

b′j =
∑

i:(i,j)∈L1

yij is the quantity shipped to jth destination in Level-I trans-

portation problem.
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Thus the two-level hierarchical time minimizing transportation problem
is defined as:

min
Y ∈SL1

[

max
L1

(

tij(yij)
)

+ min
Z∈SL1

(Y )

{

max
L2

(

tij(zij)
)}

]

(HTP)

Clearly a feasible solution of Level-I transportation problem, say Y ∈ SL1 ,
along with the corresponding optimal feasible solution of Level-II trans-
portation problem constitutes a feasible solution of the two level hierar-
chical time minimizing transportation problem (HTP). Clearly (HTP) is
closely related to the following balanced time minimizing transportation
problem defined as:

min
X∈S

[

max
I×J

(

tij(xij)
)

]

(TP)

where,

S :























∑

j∈J
xij = ai, i ∈ I

∑

i∈I
xij = bj , j ∈ J

xij ≥ 0, ∀ (i, j) ∈ I × J

Suppose Lk1 = {(i, j) ∈ L1 : tij = T kL1
}, k = 0, 1, . . . , l1 be the pair-

wise disjoint partitions of the Level-I source-destination links where, T jL1
>

T j+1
L1

, j = 1, 2, . . . , (l1 − 1).

Similarly Lk2 = {(i, j) ∈ L2 : tij = T kL2
}, k = 0, 1, . . . , l2 denote pairwise

distinct partitions of the Level-II source-destination links where, T jL2
>

T j+1
L2

, j = 1, 2, . . . , (l2 − 1).

Suppose X is an optimal basic feasible solution of the time minimizing
transportation problem (TP ). Let Level-I and Level-II shipment times
for this feasible schedule X be respectively T uL1

and T vL2
where, T uL1

∈
{T kL1

, k = 1, 2, . . . , l1} and T vL2
∈ {T kL2

, k = 1, 2, . . . , l2}. That is, TL1(X) =
max
L1

{tij(xij)} = T uL1
, and TL2(X) = max

L2

{tij(xij)} = T vL2
.

Without loss of generality it may be assumed that T uL1
≥ T vL2

. This
means overall minimum shipment time in the time minimizing transporta-
tion problem (TP) is T uL1

= max
I×J

{tij(xij)}.

The optimal basic feasible solution of the cost minimizing transporta-
tion problem (CP vL2

) defined below will provide the minimum Level-II ship-
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ment time (say T v+q0L2
≤ T vL2

, q0 ≥ 0) corresponding to the Level-I shipment
time T uL1

. (Ref. Theorem 2.2)

min
X∈S

∑

I×J
cijxij (CP vL2

)

where,

cij = M, (i, j) ∈ L1 : tij > T uL1
, or (i, j) ∈ L2 : tij > T vL2

= 0, (i, j) ∈ L1 : tij ≤ T uL1

= λv+r, (i, j) ∈ L2 : tij = T v+rL2
, r = 0, 1, . . . , (l2 − v)

λj ’s being positive integers such that λj >> λj+1 ∀ j.
For specification of λj ’s one may refer to Mazzola (Mazzola (1983)) and

Sherali (Sherali (1982)). The first pair of the Level-I and Level-II shipment
times thus generated is

(

T u−p0L1
, T v+q0L2

: T u−p0L1
≥ T v+q0L2

)

, p0 = 0.

Suppose (T u−p0 , T v+q0), (T u−p1L1
, T v+q1L2

), . . . , (T
u−pk−1

L1
, T

v+qk−1

L2
) are

the pairs of Level-I and Level-II shipment times obtained so far where,
p1, p2, . . . , pk−1 and q1, q2, . . . , qk−1 are positive integers such that pj+1 > pj
and qj+1 > qj for all j = 0, 1, 2, . . . , k − 2. These pairs are such that

T
v+qj
L2

(j = 0, 1, 2, . . . , k − 1) is the minimum Level-II shipment time corre-

sponding to the time T
u−pj

L1
of Level-I shipment and T

u−pj

L1
is the minimum

Level-I shipment time corresponding to the time T
v+qj
L2

of Level-II shipment
(Ref. Theorem 2.2).

To find the next higher value of the Level-I shipment time (say T u−pk
L1

>

T
u−pk−1

L1
)(Ref. Theorem 2.1), the following time minimizing transportation

problem (call it (TP
v+qk−1

L2
)) is studied

min
X∈S

{

max
I×J

(

t
′
ij(xij)

)

}

(TP
v+qk−1

L2
)

where,

t′ij = M(>> 0), (i, j) ∈ L2 : tij ≥ T
v+qk−1

L2

= tij , otherwise

A feasible solution of this problem is called an M-feasible solution if
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xij = 0 ∀ (i, j) ∈ I × J for which t′ij = M .

Theorem 2.1. Let X
v+qk−1

L2
= (x

v+qk−1

L2ij
) be an optimal basic M-feasible

solution of the time minimizing transportation problem (TP
v+qk−1

L2
). Then,

the Level-I shipment time at this optimal solution is greater than T
u−pk−1

L1
.

Proof. Since optimal basic feasible solution of the problem (TP
v+qk−1

L2
) is M-

feasible, it follows from the construction of this problem that TL2(X
v+qk−1

L2
) <

T
v+qk−1

L2
.

Let TL2(X
v+qk−1

L2
) = T

v+q0k
L2

(< T
v+qk−1

L2
) where, q0k is positive integer

greater than qk−1.

As T
v+qk−1

L2
is the minimum Level-II shipment time corresponding to

time T
u−pk−1

L1
of Level-I shipment and as TL2(X

v+qk−1

L2
) < T

v+qk−1

L2
, it follows

that TL1(X
v+qk−1

L2
) > T

u−pk−1

L1
.

As TL1(X
v+qk−1

L2
) > T

u−pk−1

L1
, let TL1(X

v+qk−1

L2
) = T u−pk

L1
where, pk(>

pk−1) is a positive integer.

To obtain the minimum value of the Level-II shipment time correspond-
ing to the time T u−pk

L1
of Level-I shipment (Ref. Theorem 2.2), the following

cost minimizing transportation problem is defined:

min
X∈S

∑

I×J
cijxij (CP

v+q0k
L2

)

where,

cij = M, (i, j) ∈ L1 : tij > T u−pk
L1

, or (i, j) ∈ L2 : tij > T
v+q0k
L2

= 0, (i, j) ∈ L1 : tij ≤ T u−pk
L1

= λv+q0k+r, (i, j) ∈ L2 : tij = T
v+q0k+r

L2
; r = 0, 1, . . . , (l2 − (v + q0k))

and λj ’s are positive integers such that λj >> λj+1 ∀ j.
Clearly optimal basic M-feasible solution of (TP

v+qk−1

L2
) is a feasible

solution of this cost minimizing transportation problem (CP
v+q0k
L2

) yielding
non-zero value of its objective function. Therefore, the optimal value of the
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objective function in (CP
v+q0k
L2

) is non-negative. The theorem (Theorem 2.2)
that follows establishes that the minimum value of the Level-II shipment
corresponding to the time T u−pk

L1
of the Level-I shipment is yielded by an

optimal basic feasible solution of this problem.

Theorem 2.2. Let X
v+q0k
L2

be an optimal basic feasible solution of the cost

minimizing transportation problem (CP
v+q0k
L2

). Then, TL2(X
v+q0k
L2

) is the

minimum Level-II shipment time corresponding to the time T u−pk
L1

of the

Level-I shipment. Also T u−pk
L1

is the minimum Level-I shipment time cor-

responding to the time TL2(X
v+q0k
L2

) of the Level-II shipment.

Proof. As mentioned above, the optimal value of the objective function of

the cost minimizing transportation problem (CP
v+q0k
L2

) is non-negative.

Case-I. The optimal value of the objective function of the problem (CP
v+q0k
L2

)
is zero.

In this case TL2(X
v+q0k
L2

) = 0.

TL1(X
v+q0k
L2

) 6< T u−pk
L1

because for Level-I shipment time smaller than

T u−pk
L1

the corresponding minimum time for Level-II shipment is not

zero. Therefore, TL1(X
v+q0k
L2

) = T u−pk
L1

. The value of the objective

function of the problem (HTP) is (T u−pk
L1

+ 0).

Case-II. The optimal value of the objective function of the problem (CP
v+q0k
L2

)
is positive.

In this case TL2(X
v+q0k
L2

) ≤ T
v+q0k
L2

.

Let TL2(X
v+q0k
L2

) = T v+qkL2
(≤ T

v+q0k
L2

) where, qk is a positive integer

not less than the positive integer q0k. Let qk = q0k + j for some j ≥
0. It is claimed that T v+qkL2

is the minimum Level-II shipment time

corresponding to the time T u−pk
L1

of Level-I shipment.

Let T v+qkL2
be not the minimum Level-II shipment time corresponding to

the time T u−pk
L1

of Level-I shipment.

This implies that there exists a solution Y ∈ S such that TL2(Y ) =
T v+qk+s
L2

(< T v+qkL2
), s ≥ 1 and TL1(Y ) = T u−pk

L1
.
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Hence TL2(Y ) = T
v+q0k+j+s
L2

since qk = q0k + j for some j ≥ 0.

Value of the objective function of the problem (CP
v+q0k
L2

) at the feasible
solution Y is:

=
∑

(i,j)∈
l2
⋃

d=v+q0
k
+j+s

Ld
2

λd yij

<
∑

(i,j)∈
l2
⋃

d=v+q0
k
+j

Ld
2

λd x
v+q0k
L2ij

(because of the nature of the order relations among λ′js)

But this cannot hold as X
v+q0k
L2

is an optimal basic feasible solution of

the problem (CP
v+q0k
L2

). Therefore, there does not exist Y ∈ S such that

TL2(Y ) = T v+qk+s
L2

and TL1(Y ) = T u−pk
L1

.

To prove that T u−pk
L1

is the minimum Level-I shipment time correspond-

ing to the time T v+qkL2
of Level-II shipment, assume the contrary.

Therefore, there exists Z ∈ S such that TL1(Z) = T u−pk+l
L1

(< T u−pk
L1

)

and TL2(Z) = T v+qkL2
.

Possibility-I. T u−pk+l
L1

= T
u−pj

L1
for some j ∈ {0, 1, 2, ..., k − 1} where,

p0 = 0.

But then TL2(Z) = T v+qkL2
< T

v+qj
L2

, which is not possible as T
v+qj
L2

is

the minimum Level-II shipment time corresponding to time T
u−pj

L1
of Level-I

shipment.

Possibility-II. T uL1
< T u−pk+l

L1
< T u−pk

L1
and T u−pk+l

L1
6= T

u−pj

L1
for any

j ∈ {0, 1, 2, . . . , k − 1}.
This implies that there exists an interval

(

T
u−pm−1

L1
, T u−pm

L1

)

such that

T uL1
< T

u−pm−1

L1
< T u−pk+l

L1
< T u−pm

L1
< T u−pk

L1
where, T

u−pm−1

L1
and T u−pm

L1

are two consecutive recorded Level-I shipment times in the first k record-
ings. Consider the time minimizing transportation problem (TP

v+qm−1

L2
)

whose optimal basic M-feasible solution is X
v+qm−1

L2
. The Level-I and



312 Sonia and M.C. Puri

Level-II shipment times at this M-feasible solution are: TL1(X
v+qm−1

L2
) =

T u−pm

L1
and TL2(X

v+qm−1

L2
) = T

v+q0m
L2

.

As T v+qkL2
< T

v+qm−1

L2
, Z is a feasible solution for the problem (TP

v+qm−1

L2
)

yielding Level-I and Level-II shipment times as T u−pk+l
L1

and T v+qkL2
respec-

tively.

Hence Z is a feasible solution of (TP
v+qm−1

L2
) yielding its objective

function value better than that yielded by X
v+qm−1

L2
, which is not true as

X
v+qm−1

L2
is an optimal basic M-feasible solution of (TP

v+qm−1

L2
).

Hence T u−pk
L1

is the minimum Level-I shipment time corresponding to

the time T v+qkL2
of Level-II shipment.

Remark 2.1. When optimal value of the objective function in the cost min-

imizing transportation problem (CP
v+q0k
L2

) is zero then for Level-I shipment

times greater than T u−pk
L1

the corresponding minimum Level-II shipment
time would be zero. Therefore, the Level-I and Level-II shipment time pairs
with Level-I shipment time greater than T u−pk

L1
will not yield value of the

objective function of the problem (HTP) smaller than (T u−pk
L1

+ 0). Hence

Level-I shipment times greater than T u−pk
L1

need not be investigated.

The next theorem (Theorem 2.3) characterizes the termination of the
process of generating the pairs of the Level-I and the Level-II shipment
times with Level-I shipment time greater than the Level-II shipment time.

Theorem 2.3. Let an optimal basic feasible solution X
v+qk−1

L2
of the time

minimizing transportation problem (TP
v+qk−1

L2
) be not an M-feasible solu-

tion. Then, there does not exist any feasible solution X ∈ S yielding the pair
of the Level-I and Level-II shipment times as

(

TL1(X), TL2(X) : TL1(X) >
TL2(X)

)

such that

(

TL1(X) + TL2(X)
)

≤ min
j=0,1,...,k−1

(

T
u−pj

L1
+ T

v+qj
L2

)

where, p0 = 0, q0 ≥ q00(= 0).

Proof. As X
v+qk−1

L2
, an optimal basic feasible solution of the problem

(TP
v+qk−1

L2
), is not an M-feasible solution, x

v+qk−1

L2ij
> 0 for some (i, j) ∈

I × J : tij = M .
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Therefore, by definition of (TP
v+qk−1

L2
), TL2(X

v+qk−1

L2
) ≥ T

v+qk−1

L2
.

Let TL2(X
v+qk−1

L2
) = T v+q̂L2

(≥ T
v+qk−1

L2
).

Case-I. TL1(X
v+qk−1

L2
) = T

u−pj

L1
for some j ∈ {0, 1, 2, . . . , k − 1}.

TL1(X
v+qk−1

L2
) + TL2(X

v+qk−1

L2
) = T

u−pj

L1
+ T v+q̂L2

.

As T
v+qj
L2

is the minimum time for Level-II shipment corresponding

to time T
u−pj

L1
for Level-I shipment we have:

T
u−pj

L1
+ T v+q̂L2

≥ T
u−pj

L1
+ T

v+qj
L2

≥ min
j=0,1,...,k−1

[

T
u−pj

L1
+ T

v+qj
L2

]

.

Case-II. TL1(X
v+qk−1

L2
) = T aL1

for some a ∈ {1, 2, . . . , l1} such that T u−p0L1
<

T aL1
< T

u−pk−1

L1
and T aL1

6= T
u−pj

L1
for any j ∈ {0, 1, . . . , k − 1}.

This implies that there exists a subinterval, say
[

T
u−pm−1

L1
, T u−pm

L1

]

of

[T u−p0L1
, T

u−pk−1

L1
] such that T

u−pm−1

L1
< T aL1

< T u−pm

L1
Now,

TL1(X
v+qk−1

L2
) + TL2(X

v+qk−1

L2
) = T aL1

+ T v+q̂L2

> T
u−pm−1

L1
+ T v+q̂L2

.

As T
v+qm−1

L2
is the minimum time for Level-II shipment corresponding

to time T
u−pm−1

L1
for Level-I shipment we have:

T
u−pm−1

L1
+ T v+q̂L2

> T
u−pm−1

L1
+ T

v+qm−1

L2

≥ min
j=0,..,k−1

(T
u−pj

L1
+ T

v+qj
L2

).

Case-III. If TL1(X
v+qk−1

L2
) = T bL1

> T
u−pk−1

L1
for some b > 0, then

TL1(X
v+qk−1

L2
) + TL2(X

v+qk−1

L2
) = T bL1

+ T v+q̂L2

≥ T bL1
+ T

v+qk−1

L2

> T
u−pk−1

L1
+ T

v+qk−1

L2

≥ min
j=0,1,..,k−1

(T
u−pj

L1
+ T

v+qj
L2

).
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Hence the result.

Remark 2.2. If the optimal basic feasible solution X
v+qk−1

L2
of the time

minimizing transportation problem (TP
v+qk−1

L2
) is not an M-feasible solu-

tion, there is no need of further generation of Level-I and Level-II shipment
time pairs with Level-I shipment time greater than Level-II shipment time.
The current upper bound on the optimal value of the objective function of
the problem (HTP) would be min

j=0,1,...,k−1

(

T
u−pj

L1
+ T

v+qj
L2

: T
u−pj

L1
> T

v+qj
L2

)

.

To generate the pairs of the Level-I and Level-II shipment times with
Level-I shipment time smaller than the Level-II shipment time, first the
existence of a feasible solution with the Level-I shipment time smaller than
T v+q0L2

and the Level-II shipment time greater than or equal to T uL1
(≡ T u−p0L1

)
is examined. The next theorem (Theorem 2.4) pertains to the existence of
such a solution.

Theorem 2.4. Consider the following time minimizing transportation prob-
lem (TP v+q0L1

):

min
X∈S

{

max
I×J

(

t
′
ij(xij)

)

}

(TP v+q0L1
)

where, t′ij = M(>> 0), ∀ (i, j) ∈ L1 : tij ≥ T v+q0L2
.

If its optimal basic feasible solution, say Xv+q0
L1

, is M-feasible, then

the Level-I shipment time TL1(X
v+q0
L1

) < T v+q0L2
and TL2(X

v+q0
L1

) ≥ T u−p0L1

(p0 = 0).

Proof. As the minimum overall shipment time in the time minimizing trans-
portation problem (TP) is T uL1

, the proof follows directly from the definition

of the problem (TP v+q0L1
) and the nature of basic M-feasible solution.

Remark 2.3. If optimal basic feasible solution of the problem (TP v+q0L1
)

is not an M-feasible solution, then there does not exist a feasible solution
X ∈ S of the problem (HTP) with the Level-I shipment time less than
T v+q0L2

.

Once the existence of the Level-I shipment time less than T v+q0L2
with

the Level-II shipment time greater than or equal to T uL1
is known, then it is

pertinent to examine the existence of more pairs of Level-I and Level-II ship-
ment times with Level-I shipment time smaller than the Level-II shipment
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time. Suppose that Level-I and Level-II shipment time pairs
(

T
u+q̃j−1

L1
,

T
v−p̃j−1

L2
: T

u+q̃j−1

L1
< T

v−p̃j−1

L2

)

, j = 1, 2, . . . , k are known. In each pair
the Level-I shipment time is the minimum corresponding to the Level-II
shipment time and also the Level-II shipment time is the minimum corre-
sponding to the Level-I shipment time in that pair (Ref. Theorem 2.5). It
may be noted that q̃j ’s and p̃j ’s for all j = 1, 2, . . . , k − 1 are non-negative
integers such that p̃j > p̃j−1 and q̃j > q̃j−1. Therefore,

T u+q̃0L1
> T u+q̃1L1

> . . . > T
u+q̃k−1

L1
and T v−p̃0L2

< T v−p̃1L2
< . . . < T

v−p̃k−1

L2
.

Consider the following time minimizing transportation problem
(TP

u+q̃k−1

L1
)

min
X∈S

{

max
I×J

(

t
′
ij(xij)

)

}

(TP
u+q̃k−1

L1
)

where, t′ij = M(>> 0), ∀ (i, j) ∈ L1 : tij ≥ T
u+q̃k−1

L1
.

Suppose X
u+q̃k−1

L1
is its optimal basic M-feasible solution. By definition

of M-feasible solution it follows that TL1(X
u+q̃k−1

L1
) < T

u+q̃k−1

L1
.

Let TL1(X
u+q̃k−1

L1
) = T

u+q̃0k
L1

(< T
u+q̃k−1

L1
). As in all the pairs (T

u+q̃j
L1

, T
v−p̃j

L2
),

j = 0, 1, . . . , k − 1, T
u+q̃j
L1

is the minimum Level-I shipment time cor-

responding to the time T
v−p̃j

L2
of the Level-II shipment, it follows that

TL2(X
u+q̃k−1

L1
) > T

v−p̃k−1

L2
. Let TL2(X

u+q̃k−1

L1
) = T v−p̃k

L2
(> T

v−p̃k−1

L2
). The

next theorem (Theorem 5) pertains to the generation of the pair (T u+q̃kL1
,

T v−p̃k
L2

) of the Level-I and Level-II shipment times. In this pair T u+q̃kL1
is

the minimum Level-I shipment time corresponding to the time T v−p̃k
L2

of

the Level-II shipment and T v−p̃k
L2

is the minimum Level-II shipment time

corresponding to the time T u+q̃kL1
of the Level-I shipment. This theorem

involves the following cost minimizing transportation problem (named as

(CP
u+q̃0k
L1

)).

min
X∈S

∑

I×J
cijxij (CP

u+q̃0k
L1

)
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where,

cij = M, (i, j) ∈ L1 : tij > T
u+q̃0k
L1

, or (i, j) ∈ L2 : tij > T v−p̃k
L2

= 0, (i, j) ∈ L2 : tij ≤ T v−p̃k
L2

= λu+q̃0k+r, (i, j) ∈ L1 : tij = T
u+q̃0k+r

L1
, r = 0, 1, . . . , (l1 − (u+ q̃0k))

λj ’s being positive integers such that λj >> λj+1 ∀ j.

Theorem 2.5. If X
u+q̃0k
L1

is an optimal basic feasible solution of the cost

minimizing transportation problem (CP
u+q̃0k
L1

), then TL1(X
u+q̃0k
L1

) is the mini-

mum Level-I shipment time corresponding to the time T v−p̃k
L2

of the Level-II

shipment. Also T v−p̃k
L2

is the minimum Level-II shipment time correspond-

ing to the time TL1(X
u+q̃0k
L1

) of the Level-I shipment.

Proof. The proof runs exactly on the lines of the Theorem 2. In place of

the problems (CP
v+q0k
L2

) and (TP
v+qk−1

L2
) proof will now depend upon the

use of the problems (CP
u+q̃0k
L1

) and (TP
u+q̃k−1

L1
) respectively.

The following theorem (Theorem 2.6) characterizes the termination of
the process of searching of more of Level-I and Level-II shipment time pairs
with Level-I shipment time less than the Level-II shipment time.

Theorem 2.6. If optimal basic feasible solution Xu+q̃k
L1

of the time mini-

mizing transportation problem (TP u+q̃kL1
) is not an M-feasible solution, then

there does not exist a Level-I and Level-II shipment time pair
(

(

TL1(.),

TL2(.)
)

: TL2(.) > TL1(.)
)

such that

TL1(.) + TL2(.) < min
j={0,1,...,k}

(

T
u+q̃j
L1

+ T
v−p̃j

L2

)

.

Proof. Proof is similar to the proof of Theorem 2.3 except that in place of
the problem (TP v+qkL2

) one will have to use the problem (TP u+q̃kL1
).

Remark 2.4. Whenever the time minimizing transportation problem
(TP u+q̃kL1

) does not have a basic M-feasible solution then, the best Level-I
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and Level-II shipment time pair with Level-I shipment time smaller than
the Level-II shipment time correspond to

min
j=0,1,...,k

(

T
u+q̃j
L1

+ T
v−p̃j

L2

)

and therefore, the Level-I and Level-II shipment time pairs beyond the pair
(

T u+q̃kL1
+ T v−p̃k

L2

)

need not be studied.

The last theorem (Theorem 2.7) given below characterizes the global
minimizer of the two level hierarchical time minimizing transportation
problem (HTP).

Theorem 2.7. The global minimum value of the objective function of the
two level hierarchical time minimizing transportation problem (HTP) is

min







min
j≥0

(

T
u−pj

L1
+ T

v+qj
L2

: T
u−pj

L1
> T

v+qj
L2

)

,

min
j≥0

(

T
u+q̃j
L1

+ T
v−p̃j

L2
: T

u+q̃j
L1

< T
v−p̃j

L2

)







where, pj’s, qj’s, q̃j’s and p̃j’s are non-negative integers such that pj > pj−1,
qj > qj−1, q̃j > q̃j−1 and p̃j > p̃j−1 for all j ≥ 1, p0 = 0, q0 ≥ 0.

Proof. Let

min







min
j≥0

(

T
u−pj

L1
+ T

v+qj
L2

: T
u−pj

L1
> T

v+qj
L2

)

,

min
j≥0

(

T
u+q̃j
L1

+ T
v−p̃j

L2
: T

u+q̃j
L1

< T
v−p̃j

L2

)







= T u−ps

L1
+ T v+qsL2

(say) for some s ≥ 0.

If possible, assume that the statement of the theorem is not true.

This implies that there exists X̂ ∈ S such that

TL1(X̂) + TL2(X̂) < T u−ps

L1
+ T v+qsL2

. (2.1)

As min
S

{max
I×J

tij(xij)} = T uL1
, TL1(X̂) ≥ T uL1

.

Let |{(T u−pj

L1
, T

v+qj
L2

) : T
u−pj

L1
> T

v+qj
L2

, j ≥ 0}| = h + 1. That is,

(T u−ph
L1

, T v+qhL2
) is the last pair in the set {(T u−pj

L1
, T

v+qj
L2

): T
u−pj

L1
> T

v+qj
L2

, j ≥
0}.
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Case-I. T u−p0L1
≤ TL1(X̂) ≤ T u−ph

L1

(a) TL1(X̂) = T u−pk
L1

for some k ∈ {0, 1, 2, 3, ..., h}.
Since TL1(X̂) + TL2(X̂) < T u−ps

L1
+ T v+qsL2

≤ T u−pk
L1

+ T v+qkL2
, it

follows that TL2(X̂) < T v+qkL2
.

Let TL2(X̂) = T v+qk+j
L2

(< T v+qkL2
) for some j ≥ 1.

This implies that X̂ is a feasible solution of the cost minimizing

transportation problem (CP
v+q0k
L2

) because T v+qkL2
< T

v+q0k
L2

.

Now, the value of the objective function of the problem (CP
v+q0k
L2

)

at this feasible solution X̂ is:

=
∑

(i,j)∈
l2
⋃

d=v+qk+j
Ld

2

λd x̂ij

<
∑

(i,j)∈
l2
⋃

d=v+q0
k

Ld
2

λd x
u+q0k
L2ij

since qk + j > qk ≥ q0k

which can not hold as X
u+q0k
L1

is an optimal feasible solution of

the problem (CP
v+q0k
L2

).

(b) TL1(X̂) = T u−p̂L1
(say) and T u−p̂L1

6= T
u−pj

L1
for any j.

This implies that there exists an index, say f , such that T
u−pf−1

L1
<

T u−p̂L1
< T

u−pf

L1
.

Since T u−p̂L1
= TL1(X̂) > T

u−pf−1

L1
, we have TL2(X̂) < T

v+qf−1

L2
.

Therefore, X̂ is an M-feasible solution of the problem (TP
v+qf−1

L2
)

yielding its objective value T u−p̂L1
< T

u−pf

L1
. This contradicts the

fact that T
u−pf

L1
is the optimal value of the objective function in

the problem (TP
v+qf−1

L2
).

Case-II. TL1(X̂) > T u−ph
L1

.

As (T u−ph
L1

, T v+qhL2
) is the last pair in the set {(T u−pj

L1
, T

v+qj
L2

) : T
u−pj

L1
>

T
v+qj
L2

, j ≥ 0}, it follows from Remark 2.1 on Theorem 2.2 and Re-
mark 2.2 on Theorem 2.3 that either optimal value of the objective
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function of the cost minimizing transportation problem (CP
v+q0h
L2

) is
zero or optimal basic feasible solution of the time minimizing trans-
portation problem (TP v+qhL2

) is not an M-feasible solution.

(a) The optimal value of the objective function of the cost minimiz-

ing transportation problem (CP
v+q0h
L2

) is zero.

In this case, by virtue of Remark 2.1 on Theorem 2.2 it follows

that T v+qhL2
≡ TL2(X

v+q0h
L2

) = 0.

Therefore, TL1(X̂) + TL2(X̂) > T u−ph
L1

+ T v+qhL2
(= 0), which con-

tradicts (2.1).

(b) An optimal basic feasible solution of the time minimizing trans-
portation problem (TP v+qhL2

) is not an M-feasible solution.

Since we have TL1(X̂) > T u−ph
L1

, it follows that TL2(X̂) < T v+qhL2
.

But this implies that X̂ is an M-feasible solution of the problem
(TP v+qhL2

), which is not possible because this problem in the
current case has no M-feasible solution.

Hence there does not exist X̂ satisfying

TL1(X̂) + TL2(X̂) < min
j≥0

(

T
u−pj

L1
+ T

v+qj
L2

: T
u−pj

L1
> T

v+qj
L2

)

.

Similarly if

min







min
j≥0

(

T
u−pj

L1
+ T

v+qj
L2

: T
u−pj

L1
> T

v+qj
L2

)

,

min
j≥0

(

T
u+q̃j
L1

+ T
v−p̃j

L2
: T

u+q̃j
L1

< T
v−p̃j

L2

)







= min
j≥0

(

T
u+q̃j
L1

+ T
v−p̃j

L2

)

one can establish the result likewise.

Remark 2.5. If

min







min
j≥0

(

T
u−pj

L1
+ T

v+qj
L2

: T
u−pj

L1
> T

v+qj
L2

)

,

min
j≥0

(

T
u+q̃j
L1

+ T
v−p̃j

L2
: T

u+q̃j
L1

< T
v−p̃j

L2

)







= T u−pk
L1

+ T v+qkL2
,

then the optimal basic feasible solution X
v+q0k
L2

of the cost minimizing trans-

portation problem (CP
v+q0k
L2

) is a global minimizer of the two level hierar-
chical time minimizing transportation problem (HTP).



320 Sonia and M.C. Puri

3 Algorithm

Step 1 Obtain optimal basic feasible solution of the problem (TP). If its
optimal basic feasible solution consists of only Level-I links or Level-II
links, then stop and go to step 7.

Else, note the corresponding Level-I shipment time as T uL1
and Level-II

shipment time as T vL2
. (T uL1

≥ T vL2
, say).

Construct the cost minimizing transportation problem (CP
v+q00
L2

), q00 =
0 and solve it to find the minimum Level-II shipment time corre-
sponding to the time T uL1

(≡ T u−p0L1
) of Level-I shipment. Record this

pair as (T u−p0L1
, T v+q0L2

), p0 = 0, q0 ≥ 0.

If T u−p0L1
= T 1

L1
or the optimal value of the objective function of the

problem (CP
v+q00
L2

) is zero, go to step 3.

Else, go to step 2.

Step 2 (k ≥ 1) Construct the time minimizing transportation problem
(TP

v+qk−1

L2
). Find its optimal basic feasible solution. If it is not an

M-feasible solution, then go to step 3. Else, construct the cost min-

imizing transportation problem (CP
v+q0k
L2

) and find its optimal basic
feasible solution. If its optimal value is non-zero, then read the cor-
responding Level-I and Level-II shipment times. Record this pair as
(T u−pk
L1

, T v+qkL2
).

If T u−pk
L1

= T 1
L1

or optimal value of the objective function of the cost

minimizing transportation problem (CP
v+q0k
L2

) is zero, then no further
useful Level-I and Level-II shipment time pair with Level-I shipment
time greater than the Level-II shipment time can be constructed and
hence go to step 3.

Else, go to step 5.

Step 3 Construct the time minimizing transportation problem (TP v+q0L1
),

find its optimal basic feasible solution, if it is not an M-feasible solu-
tion, then go to step 7.

Else, read the corresponding Level-I and Level-II shipment times as

T
u+q̃00
L1

and T v−p̃0L2
. Construct the cost minimizing transportation prob-

lem (CP
u+q̃00
L1

), find its optimal basic feasible solution. If optimal value
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of its objective function is non-zero, read the corresponding shipment
times of both the levels. Record this pair as (T u+q̃0L1

, T v−p̃0L2
).

If T v−p̃0L2
= T 1

L2
or the optimal value of the objective function of the

problem (CP
u+q̃00
L1

) is zero, then no further useful Level-I and Level-II
shipment time pair with Level-I shipment time less than the Level-II
shipment time can be constructed and hence go to step 7. Else, go
to step 4.

Step 4 (j ≥ 1) Construct the problem (TP
u+q̃j−1

L1
) and find its optimal ba-

sic feasible solution. If it is not an M-feasible solution, then no more
useful Level-I and Level-II shipment time pair with Level-I shipment
time smaller than the Level-II shipment time can be constructed and
hence go to step 7. Else, note the Level-I and Level-II shipment

times as T
u+q̃0j
L1

and T
v−p̃j

L2
respectively. Construct the cost minimiz-

ing transportation problem (CP
u+q̃0j
L1

), find its optimal basic feasible
solution. If its optimal value is non-zero, then read the corresponding
Level-I and Level-II shipment times. Record this Level-I and Level-II

shipment time pair as (T
u+q̃j
L1

, T
v−p̃j

L2
).

If T
v−p̃j

L2
= T 1

L2
or optimal value of the objective function of the

problem (CP
u+q̃0j
L1

) is zero, go to step 7.

Else, go to step 6.

Step 5 Execute step 2 for next higher value of k.

Step 6 Execute step 4 for next higher value of j.

Step 7 Find

min







min
j≥0

(

T
u−pj

L1
+ T

v+qj
L2

: T
u−pj

L1
> T

v+qj
L2

)

,

min
j≥0

(

T
u+q̃j
L1

+ T
v−p̃j

L2
: T

u+q̃j
L1

< T
v−p̃j

L2

)







This will be the optimal value of the objective function of the two
level hierarchical time minimizing transportation problem.
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4 Numerical Illustration

Consider the following 6 × 8 two level hierarchical time minimizing trans-
portation problem, where shaded cells denote the Level-I links.

D1 D2 D3 D4 D5 D6 D7 D8 ai

S1 5 3 7 9 5 1 10 6 9

S2 13 4 6 12 12 10 9 3 2

S3 8 13 2 9 3 8 9 6 2

S4 4 1 4 4 9 6 13 13 10

S5 2 6 2 6 13 12 5 12 6

S6 9 10 4 8 7 6 4 7 6

bj 5 8 6 2 6 3 2 3

T 1
L1

= 13, T 2
L1

= 12, T 3
L1

= 10, T 4
L1

= 9, T 5
L1

= 8, T 6
L1

= 7, T 7
L1

= 6
T 8
L1

= 4, T 9
L1

= 3, T 10
L1

= 2, T 11
L1

= 1; therefore, l1 = 11.

T 1
L2

= 13, T 2
L2

= 12, T 3
L2

= 10, T 4
L2

= 9, T 5
L2

= 8, T 6
L2

= 7, T 7
L2

= 6,
T 8
L2

= 5, T 9
L2

= 4, T 10
L2

= 3, T 11
L2

= 2; therefore, l2 = 11.

An optimal basic feasible solution of (TP) yields the value of Level-I
shipment time as T uL1

(= T u−p0L1
) = 6 and Level-II shipment time as T vL2

(=

T
v+q00
L2

) = 5.

An optimal basic feasible solution of the cost minimizing transportation

problem (CP
v+q00
L2

) yields Level-I shipment time as 6 units and the corre-

sponding minimum Level-II shipment time as 5 units. Hence T v+q0L2
= 5.

The first recorded pair is (6,5).

Next, time minimizing transportation problem (TP v+q0L2
) is constructed

whose optimal basic feasible solution is an M-feasible solution yielding

Level-I and Level-II shipment times respectively as T u−p1L1
= 7 and T

v+q01
L2

= 4.
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The optimal basic feasible solution of cost minimizing transportation

problem (CP
v+q01
L2

) yields the minimum Level-II shipment time as T v+q1L2
= 4

corresponding to the Level-I shipment time T u−p1L1
= 7.

The second recorded pair is (7,4).

Next, time minimizing transportation problem (TP v+q1L2
) is constructed

whose optimal basic feasible solution is an M-feasible solution yielding

Level-I and Level-II shipment times respectively as T u−p2L1
= 9 and T

v+q02
L2

= 3.

An optimal basic feasible solution of the cost minimizing transportation

problem (CP
v+q02
L2

) yields the minimum Level-II shipment time as T v+q2L2
= 2

corresponding to the Level-I shipment time T u−p2L1
= 9 .

The third recorded pair is (9,2).

Next, construct the time minimizing transportation problem (TP v+q2L2
).

As its optimal basic feasible solution is an M-feasible solution, record Level-I
shipment time as T u−p3L1

= 10 and for this solution xij = 0 ∀ (i, j) ∈ L2. This
implies that no shipment is done over source-destination links in Level-II
and hence Level-II shipment time is taken as zero.

The fourth recorded pair is (10,0).

As the Level-II shipment time is zero in the pair (10,0), go to step
3. The time minimizing transportation problem (TP v+q0L1

) is formed and

its optimal basic feasible solution is obtained. We get T
u+q̃00
L1

= 4 and

T v−p̃0L2
= 7.

The cost minimizing transportation problem (CP
u+q̃00
L1

) is constructed,
whose optimal basic feasible solution yields the minimum Level-I shipment
time as T u+q̃0L1

= 2 corresponding to the Level-II shipment time T v−p̃0L2
= 7.

Hence the fifth recorded pair is (2,7).

Next, the time minimizing transportation problem (TP u+q̃0L1
) is con-

structed, whose optimal basic feasible solution yields Level-I and Level-II

shipment times respectively as T
u+q̃01
L1

= 1 and T v−p̃1L2
= 8.

The optimal basic feasible solution of the cost minimizing transporta-

tion problem (CP
u+q̃01
L1

) yields the minimum Level-I shipment time as T u+q̃1L1
=

1 corresponding to the Level-II shipment time T v−p̃1L2
= 8.
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The sixth recorded pair is (1,8).

Next, the time minimizing transportation problem (TP u+q̃1L1
) is con-

structed whose optimal feasible solution is not an M-feasible solution, hence
we stop and go to the terminal step.

The optimal value of the objective function of the problem (HTP) is:

min
(

(6 + 5), (7 + 4), (9 + 2), (10 + 0); (2 + 7), (1 + 8)
)

= 9.

Optimal shipment schedules for Level-I and Level-II decision makers are
given below. (It may be noted that in this example alternate optimal
feasible solution exists.)

D1 D2 D3 D4 D5 D6 D7 D8 ai

S1 2© 1© 6© 9

5 3 7 9 5 1 10 6

S2 2© 2

13 4 6 12 12 10 9 3

S3 2© 2

8 13 2 9 3 8 9 6

S4 5© 2© 3© 10

4 1 4 4 9 6 13 13

S5 3© 1© 2© 6

2 6 2 6 13 12 5 12

S6 3© 3© 6

9 10 4 8 7 6 4 7

bj 5 8 6 2 6 3 2 3
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5 Concluding Remarks

(a) In hierarchical optimization problems there is a hierarchical ordering of
decision makers, and one set has the authority to strongly influence the
preferences of the other decision makers. Such situations are analyzed
using Stackelberg strategy (Baser and Olsder (1982), Baser and Selbuz
(1979)).

Hierarchical optimization has found applications in areas like defense
(Bracken and McGill (1974)), competitive economies (Bracken and
McGill (1978)), government regulations (Bard (1983) Bard (1984)),
equipment scheduling (Aoki and Satoh (1982)), decentralized control
(Bard, 1983), and imperfectly competitive spatial economies and equi-
librium facility locations (Friesz et al. (1988), Tobin and Friesz (1986)).

Transportation network design has especially been an active application
area of hierarchical optimization techniques. For example, hierarchical
optimization in the transport field finds its applications in system plan-
ning (Fisk (1986)), signal optimization (Marcotte (1983)), and network
design (Friesz (1985), Suwansirikul et al. (1987)).

In the Two-Level Hierarchical Time Minimizing Transportation Prob-
lem studied in this paper, there are some sensitive source-destination
links forming the set L1. These sensitive links are used for partial
shipment by the planner (called Level-I decision-maker). Correspond-
ing to a planner’s shipment schedule, the transporter (called Level-II
decision-maker), using only Level-II links, makes the best decision for
his shipment to meet the left over demand of the destinations. The
planner aims at finding that feasible shipment schedule over the sensi-
tive links in L1 for which the corresponding optimal feasible schedule
of the transporter in Level-II is such that the sum of shipment times in
the two levels is the least. This is a very special case of Mathematical
Programming Problems with Equilibrium Constraints which, in gen-
eral, are hard problems. Even though the Two Level Hierarchical Time
Minimizing Transportation Problem is a concave minimization problem
(CMP), a successful attempt has been made to develop a polynomial
bound algorithm based upon sound mathematical results established in
this paper. This problem has been studied by associating it to a well-
studied standard time minimizing transportation problem. Standard
time minimizing transportation problem is also a (CMP) for which the
algorithms proposed by Hammer (Hammer (1969)) and Garfinkel and
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Rao (Garfinkel and Rao (1971)) are all polynomial bound algorithms.
To accelerate the convergence, the proposed algorithm uses domain
reduction in form of source-destination links abandonment.

(b) To generate the Level-I and Level-II shipment time pairs with Level-I
shipment time greater than Level-II shipment time, at most (l2 − v)
balanced time minimizing transportation problems and associated cost
minimizing transportation problems are to be solved. Similarly to ob-
tain the Level-I and Level-II shipment time pairs with Level-I shipment
time less than Level-II shipment time, not more than (l1 −u) balanced
time minimizing transportation problems and the associated cost min-
imizing transportation problems are to be solved. As time minimizing
transportation problem and cost minimizing transportation problem
are solvable by polynomial bound algorithm and as only finite num-
ber of such problems is to be investigated in the proposed approach, it
follows that the developed algorithm is a polynomial bound algorithm.
Abandoning of various source-destination links at the successive time
minimizing transportation problems and cost minimizing transporta-
tion problems accelerate the convergence of the algorithm. Otherwise
also one may use network based-approach and simply do not include
the forbidden arcs into the bipartite graph representing a cost minimiz-
ing transportation problem. It is well known that the sparse network
flow problems can be solved much faster than the dense ones.

(c) The proposed algorithm has been coded in C++ and verified success-
fully with the help of lot of examples of various sizes. Recording of some
such examples is listed Table 1. (The code of the proposed algorithm
can be made available, as and when desired.)

About 30 problems of each of above mentioned sizes have been solved,
each yielding the optimal solution within seconds on a Pentium-4 pow-
ered linux workstation.

(d) The study presented in this paper can be extended to accommodate
multi-index transportation problem, bulk transportation problem and
time minimizing assignment problem.
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Size of No. of No. of No. of No. of Optimal Optimal

the links in partitions inTMTPsCMTPs pairs pair(s) value

problemLevelLevelLevel Level solved solved obtained

I II I II solved solved obtained

4 × 6 12 12 7 7 4 3 3 (3,11) 14
5×5 13 12 11 6 4 3 3 (8,4) 12
6×8 27 21 12 12 7 6 6 (2,7), (1,8) 9
7×6 23 19 10 11 4 3 3 (6,5),(1,10) 11
7×9 28 35 11 13 5 4 4 (2,9),(1,10) 11
8×8 29 35 13 12 4 3 3 (10,2) 12
8×9 38 34 13 13 6 6 6 (0,10) 10
8×10 42 38 11 13 5 4 4 (1,7) 8
9×8 36 36 12 13 4 4 4 (12,2) 14
9×9 35 46 10 13 4 4 4 (0,13) 13
10×8 42 38 12 13 5 5 5 (6,4) 10
10×10 59 41 13 13 5 4 4 (7,5),(12,0) 12
11×7 34 43 13 12 5 3 3 (4,7) 11
11×8 45 43 13 11 5 4 4 (0,12) 12
12×5 28 32 11 13 5 3 3 (6,9),(12,3) 15
12×9 49 59 13 13 5 4 4 (0,13) 13
13×7 37 54 13 12 7 6 6 (6,5) 11
13×9 59 58 13 13 6 4 3 (2,10) 12
14×6 47 37 13 13 6 6 6 (3,8) 11
15×7 51 54 13 12 5 5 6 (6,5),(8,3) 11
15×10 79 71 13 13 8 7 7 (2,8) 10
20×5 51 49 13 12 5 4 4 (12,2),(13,1) 14

Table 1
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