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Abstract 

The present paper develops an algorithm for ranking the integer feasible solutions of a quadratic integer programming 
(QIP) problem. A linear integer programming (LIP) problem is constructed which provides bounds on the values of the 
objective function of the quadratic problem. The integer feasible solutions of this related integer linear programming 
problem are systematically scanned to rank the integer feasible solutions of the quadratic problem in non-decreasing order of 
the objective function values. The ranking in the QIP problem is useful in solving a nonlinear integer programming problem 
in which some other complicated nonlinear restrictions are imposed which cannot be included in the simple linear constraints 
of QIP, the objective function being still quadratic. 
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1. Introduct ion  

In this paper a solution strategy is proposed for 
solving a programming problem of the following 
type: 

(P) 
Min f ( X )  = CX + X'rDX 

subject to 

A X = b ,  
X >/0 and an integer vector, 

and X satisfies the additional complicated nonlinear 
restrictions h(X)<~ O. Here, X ~ R " ,  c'r ~ N  ", A 

~ m X . , b ~ R  m , D ~ R  nx" is a symmetric real 
matrix and h is a p-dimensional nonlinear vector 
function. 

* Corresponding author. 

A quadratic integer programming (QIP) problem 
closely related with problem (P) is the following: 

(QIP) 

Min f ( X )  = CX + X TDX 

subject to 

A X = b ,  
X >~ 0 and an integer vector, 

where it is assumed that the feasible region of QIP is 
nonempty and bounded. 

Quadratic integer programming problems have 
wide application: in finance, as studied by Findlay 
[3], Linmer [11] and Markowitze [13]; in capital 
budgeting, as discussed by Weingarmer [21], Bern- 
hard [1], Mao [12], Laughhunn [10], Peterson [16] 
and Rathakrishnan [17]; and in scheduling, as de- 
scribed by Moder [15]. The solution procedures for 
obtaining an optimal solution of QIP are given by 
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many authors, viz. Hammer [5,6], Glover [4], Hansen 
[7], McBride [14], Carter [2], Williams [22] and 
Kalantari [8,9]. 

Algorithms for ranking the integer feasible solu- 
tions in linear programming problems and linear 
fractional programming problems have been devel- 
oped by Verma et al. [19,20]. To the best of the 
authors' knowledge ranking the integer feasible solu- 
tions of a nonlinear programming problem and in 
particular of QIP has not yet been taken up. 

In this paper, to solve problem (P) an algorithm is 
developed to rank the integer feasible solutions of 
the QIP problem. If the k-th best (k > 1) integer 
feasible solution of QIP is the first one to satisfy the 
additional complicated nonlinear constraints h(X) ~< 
0, then that integer feasible solution will be the best 
(optimal) integer solution of problem (P). 

If the additional constraints are linear, then they 
can be incorporated in AX = b and problem (P) 
becomes a QIP problem. In realistic situations the 
additional nonlinear constraints h(X)  <~ 0 may de- 
pict financial, time, social and other restrictions. This 
proposed method of ranking the integer feasible solu- 
tions may also be useful in bicriterion quadratic 
integer programming problems. 

Section 2 of the paper deals with the theoretical 
development based upon which an algorithm for 
ranking in QIP is proposed in Section 3. A numerical 
illustration in support of the theory is included in 
Section 4. 

2. Theoretical development 

where 

Uj =j- th  component of U T (~ ~n 

= rain XTD; ( j = l  . . . . .  n) ,  
X~S  

Dj being the j-th column of D. 
It may be noticed that since 

U j K x T D j  V X ~ S ,  j = l , 2  . . . . .  n, 

( C + U ) X < ~ C X + X T D X ,  X ~ S .  

Hence 

g ( X ) < . N f ( X )  V X ~ S .  (1) 

Notations 
gi = g(Xi ), x i ~ X i, the set of the i-th best integer 

• J . 

feasll~le solutions of LIP (the i-th best integer 
feasible solutions of LIP can be obtained as 
explained by Verma et al. [19]); obviously i = 1, 
2 . . . . .  N, where gu = max{g(X):  X ~ S} 

T r= [,.Jr=lXi, r = l , 2  . . . . .  N. 
fk = The k-th best objective function value in QIP. 
Lk= The set of the k-th best integer feasible solu- 

tions of QIP. 

Proposition 2.1, proved below, explains how an 
optimal integer feasible solution of QIP is obtained 
from LIP. 

Proposition 2.1. I f  

gk > min{f( X ) :  X ~ T/'} = f ( J ~ ) ,  

say, then X is an optimal solution of QIP. 

Let S be the set of feasible solutions of QIP. That 
is, 

S = { X ~ N n : AX = b, X >7 0 and an integer vector}. 

The bounding linear integer programming (LIP) 
problem, which provides lower bounds on the objec- 
tive function values of the QIP problem, is as fol- 
lows: 

(LIP) 

Min 
X~S 

g( x )  = ( c + v ) x ,  

Proof. 

f (  X )  = min{f(  X )  " X E T k} 

f ( X ) > f ( X )  V X ~ T  k. (2) 

As gk is the value of g ( X )  at the k-th best integer 
feasible solutions of LIP, 

g w > g k  V w > k + l .  

Also, 

f(Xw~) > gw > gk > m i n { f ( X ) "  X ~  T k} 

= f ( J ~ ) .  (by the hypothesis) 
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That is, 

I ( X w j ) > I ( X ) ,  Xwj~Xw, w>~k+l.  (3) 

Eqs. (2) and (3) imply that f(J~) is the least 
among the values of f ( X )  at all the integer feasible 
solutions in S. Thus X is an optimal solution of QIP 
and f ( J ~ ) = f p  

Notice that 

L l = {XE r k ' f ( X )  = f ( J~ )}  

is the set of the optimal feasible solutions of QIP. 

Corollary 2.2. If 

gl = min{f( X) :  X e T l} = f ( J ~ ) ,  

then X is an optimal solution of QIP and 

{ X ~ T '  : f ( X ) = g l }  

is the set of the optimal solutions of QIP. 

The following Remark 2.3 is on the current lower 
and upper bounds on the optimal objective function 
value of QIP. 

Remark 2.3. If 

gk < min{f( X) " X ~ Tk}, 

then 

gk < f l  ~< min{f( X)" X E T k+ l}. 

Proposition 2.4 established below pertains to the 
k-th (k > 2) best integer feasible solution of QIP. 

Proposition 2.4. If 

gp > min{f(X)  : f ( X )  > fk-1, X ~ T v} = f (  X* ), 

say, then X * is one of the k-th best integer feasible 
solutions of QIP. 

Proof. 

f ( X *  ) = m i n { f ( X ) : f ( X )  >fk-1' XE~. TP}. 
Therefore, it follows that for those X in T p for 
which f (X)  > fk- 1, we have 

f ( X )  >~f(X*). (4) 

Also, 

f(Xqj)>~g(Xqj)=gq, XqjEXq. ( b y ( l ) )  

Therefore, 

f ( X q j ) > ~ g q > g p ,  

>~f(X*). 

That is, 

f (Xq~)> f (X* ) ,  Xqj~Xq, q>~p+l.  (5) 

Eqs. (4) and (5) imply that X * is a k-th best integer 
feasible solution of QIP. 

q > p + l  

(by the hypothesis) 

Notice that 

L, = { X ~  r p : f ( X )  =f(  X*)} 

is the set of all the k-th best integer feasible solutions 
of QIP. 

Similar to Remark 2.3 the following Remark 2.5 
is on the current bounds on the k-th best value of the 
objective function in QIP. 

Remark 2.5. If 

gp < m i n { f ( X ) : f ( X )  > A - l ,  X ~  TP}, 

then 

gp <fk ~< min{f (X) :  f ( X )  >fk-1, X ~  TP+I}. 

Remark 2.6. Suppose the set of the last best integer 
feasible solutions of LIP is reached and fl ,  f2 . . . . .  ft 
have been computed. Then the next best values of 
f (X )  are given by 

ft+a = m i n { f ( X ) : f ( X )  > f t+a -  i, XE~- TN},  

a>~l ,  

and 

L t + a = { X ~ r u : f ( X ) = f t + a } ,  a>~l. 

3. Algorithm 

Algorithm for ranking in the Quadratic Integer Pro- 
gramming (QIP) problem 

The ranking algorithm comprises of the following 
steps: 

Initial step. Find Uj by solving 

Min XTDj, j = l , 2  . . . . .  n, 
x ~ s  
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and construct the Linear Integer Programming (LIP) 
problem. 

Step 1. (Search for the best solutions of QIP.) 
Step l(a). Solve LIP and find X] = T ~, the set of 

its optimal integer feasible solutions (Verma et al. 
[19]; Salkin [18]). 

Compute g I and f (X) ,  X ~ T1. 
If 

gl = m in{ f ( X) :  X ~  T 1} = f ( ) ( ) ,  

say, then J~ is an optimal solution of QIP and the 
corresponding optimal value is f(J~). 

L1 = {x r '  f ( x )  = f ( 2 ) } .  
If 

gl < m i n { f ( X ) :  X E  Tl}, 

then set s = 2 and go to Step l(b). 
Step l(b). Find X s and gs (s > 2) (Verma et al. 

[191). 
If 

gs > m a n { f ( X ) :  X ~  T'} = f ( ) ( ) ,  

say, then X is an optimal solution of QIP and the 
corresponding optimal value is f ( ig )  (by Proposition 
2.1). 

L, = {x r ' :  f ( x )  =f (3 )} .  

If 

gs < min{ f ( X )  : X ~ r s} ,  

repeat Step l(b) for the next higher value of s. 
General step. (Search for the k-th best solutions 

of QIP, k > 2.) Find X, and gs (s >__ 2). 
If 

g, > m i n { f ( X ) : f ( X )  > f k - , ,  X ~  T ~} = f ( X * ) ,  

say, then X * is a k-th best integer feasible solution 
of QIP and f ( X  * ) is the k-th best objective function 
value (by Proposition 2.4). 

L k = { X ~  T'  : f ( X )  = f ( X * ) } .  

If 

g, < m i n { f ( X ) : f ( X )  > fk-1, X ~  Ts}, 

repeat this step for the next higher value of s. 
Terminal step. Suppose gN and X N are reached 

and f j ,  f2 . . . . .  f, have already been computed. Then 

the next best values ft+a (a > 1) of f ( X )  in QIP are 
given by 

f,+a = m i n { f ( X ) : f ( X )  >f~+a- 1; X E  TN}, 

a > 1, (by Remark 2.6) 

and 

L t + a = { x E r U : f ( X ) = f t + a } ,  a>~l. 

Concluding remarks 
(i) To obtain the best (optimal) integer feasible 
solution of problem (P), ranking the integer feasible 
solutions of the QIP problem in non-decreasing order 
of the values of f ( X )  is carried up to a stage where 
an integer feasible solution of QIP is obtained which 
satisfies the additional complicated nonlinear con- 
straints h(X) < 0. 
(ii) It may be observed that the integer feasible 
solutions of the QIP problem are ranked by ranking 
the integer feasible solutions of the associated LIP 
problem. For ranking the integer feasible solutions in 
non-decreasing order of the values of the objective 
function in LIP, one is referred to the ranking ap- 
proach developed by Verma et al. [19]. In Verma's 
approach edge truncating cuts are introduced succes- 
sively to discard the current integer feasible solutions 
(if found not suitable by the decision maker) of LIP 
and then standard methods (like Gomory's cutting 
plane technique) are used to find the next best 
integer feasible solution of LIP. The sensitivity anal- 
ysis approach of appending a constraint is used to 
obtain the new integer feasible solution and thus one 
is not required to solve a new LIP afresh. It is only 
the original LIP which is constantly under study and 
post-optimality analysis helps in finding the next 
best integer feasible solution of LIP. Otherwise also, 
we are not aware of any other method of ranking the 
integer feasible solutions of LIP except that devel- 
oped by Verma et al. [19]. 

As mentioned earlier, ranking the integer feasible 
solutions of a nonlinear programming problem and 
in particular QIP has not yet been taken up. This is 
the main motivation for the development of the 
algorithm stated above. 
(iii) Problem (P) studied in the present paper can, 
perhaps, be solved only by the proposed algorithm of 
ranking the integer feasible solutions of QIP. Finding 
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out more efficient solution methodologies for such 
problems may be a motivating force for researchers 
to take up this study. 
(iv) The solution methodologies for the QIP prob- 
lem mentioned earlier in Section 1 do not involve the 
ranking of  its integer feasible solutions. These proce- 
dures obtain only its optimal integer feasible solu- 
tion. For the time being, we are also unable to 
suggest any other methodology for solving problem 
(P) wherein the complicated nonlinear constraints are 
present. The main aim of  the present study is to 
throw open in this way the very realistic problem 
and suggest an algorithm for its solution. It is hoped 
that these ideas will stimulate more research in this 
direction. 

Also, as there is no other solution methodology 
available, we are unable to present any comparison. 
(v) Note that the form of  the matrix D is not 
crucial to the method. Any one of  several equivalent 
ways of  writing a quadratic form could be used. The 
form chosen would depend on the ease of  computing 
the Ufs  and the formulation of  LIP. D may not even 
be a posit ive/negative (semi-)definite matrix. 

4. Numer ica l  i l lustration 

Example.  Consider the problem 

(P) 

Min f ( X ) = 5 x  l + 1 2 x 2 - 2 x 2 - x  2 

subject to 2 x ~ + x  2~<10, 

4x  I + 5 x 2  >~ 20, 

x~, x 2 >~ 0 and integers, 

where X=(x~,  x2) T satisfies the additional con- 
straint 

2 x ~ + 8 x  2 - 2 x  2>715. 

Here QIP is 

Min 5x I + 1 2 X  2 - -  2 x  2 - x22, 
XES  

where 

S = { (Xl ,  x2)  E [~2 :2Xl  q--x2 ~ 10, 4 x  I q- 5X2 ~> 20;  

x I , x 2 > 0 and integers} 

Note that 

D =  0 - 1  " 

To rank the integer feasible solutions of  QIP, we 
find (U l, U 2) and construct the LIP problem. 

U I = m i n ( - 2 x l )  = - 10, 
X ~ S  

U 2 = min ( - x 2 )  = - 10.: 
X ~ S  

Thus the related linear integer programming (LIP) 
problem is 

(LIP) 

Min g ( X )  = - 5 x  I + 2 x  2, 
X e S  

where X 1 ( =  T ~) = (the set of  the optimal integer 
feasible solutions o f  LIP) = {XI~ = (5, 0)}, gl = 
- 2 5 ,  and f(Xl~)= -25.  

Thus 

gl = m i n { f ( X ) :  X e  T'}  = f ( X h )  = - 2 5 .  

Therefore, the optimal (best)integer feasible solution 
of  QIP is X~ = (5, 0). As it does not satisfy 

2 x  1 + 8 x  2 - 2 x  2 >/ 15, 

proceed to find the second best integer feasible 
solutions of  QIP. 

For the second best integer feasible solutions of  
QIP, find the set X 2 of  the second best integer 
feasible solutions of LIP: 

X z = { X 2  = ( 4 , 1 ) } ,  g2 = - 1 8 ,  

as 

g2 < m i n { f ( X ) : f ( X )  > f l ,  X ~  T 2} 

= S ( x 2 , )  = - 1 .  

Proceed to find the next b e s t  integer feasible solu- 
tions of  LIP using the procedure developed by Verma 
et al. [19]. 

X 3 -~ [X3L = (4, 2)}, g3 = -- 16, 
f ( X 3  ) =  8, T 3 =  U ~ : lX i .  

X 4 = {X4, = (3, 2)}, g4 = - -  11, 
f ( X 4 )  = 17, T 4 =  U4=IXi . 

X 5 = {Xs, = (3, 3)}, g5 = - 9 ,  
f (Xs )= 24 , T s= U~=lX r 
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X 6 = {X6~ = (3, 4)}, g6 = - -7 ,  
T - -  U i = l X i  , f ( X 6 )  = 29, 6 _ _  6 

X 7 : {X71 = (2, 3)}, g7 = - - 4 ,  

T - L J i = i X i  . f ( X 7 ) =  29, 7 _  7 

X 8 = {Xs, = (2, 4)}, g8 = - 2 ,  
T - -  U i = l X i  . f ( X 8 ) =  34, 8 _  s 

g8 < min{ f (X) : f (X)  >f l ,  X ~  TS}. 

X 9 = {X9~ = (2, 5)}, g9 = O, 

T - O i = l X i  . f ( X 9 ) =  37, 9 _  9 

g9 > m i n { f (  X ) ' f ( X )  > f l ,  X ~ T 9} = f ( X 2 ,  ).  

There fore ,  the second best  integer  feasible  solu- 

tion o f  QIP  is x2 ,  = (4, 1). Aga in  as (4, 1) does  not  

satisfy the constra int  

2 x l  + 8 x  2 -- 2 x  2 ~> 15, 

p roceed  to f ind the third best  integer  feasible  solu- 

tion o f  QIP.  P roceed ing  as exp la ined  above,  the third 

best  in teger  feas ib le  solut ion o f  QIP  is X3, = (4, 2). 

As  this third best  in teger  feasible  solut ion o f  QIP  

satisfies 2 x  I + 8 x  2 - 2 x  2 >7 15, the optimal integer 
feasible solution of problem (P) is (4, 2) and the 
optimal value is 8. 
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