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special type 

Abstract. The paper discusses a non-concave fractional 
programming problem aiming at maximization of a pseu- 
doconvex function under standard transportation condi- 
tions. The pseudoconvex function considered here is the 
product of two linear functions contrasted with a positive 
valued linear function. It has been established that opti- 
mal solution of the problem is attainable at an extreme 
point of the convex feasible region. The problem is shown 
to be related to 'indefinite' quadratic programming which 
deals with maximization of a convex function over the 
given feasible region. It has been further established that 
the local maximum point of this quadratic programming 
problem is the global maximum point under certain con- 
ditions, and its optimal solution provides an upper bound 
on the optimal value of the main problem. The extreme 
point solutions of the 'indefinite' quadratic program are 
ranked to tighten the bounds on the optimal value of the 
main problem and a convergent algorithm is developed 
to obtain the optimal solution. 

Zusammenfassung. In der Arbeit betrachten wir ein 
Transportproblem mit nicht-konkaver, peudo-konvexer 
Zielfunktion, die sich als Quotient des Produktes zweier 
linearer Funktionen und einer linearen Funktion ergibt. 
Man kann zeigen, dab die Optimall6sung fiir dieses Pro- 
blem in einer Ecke des zul/issigen Bereichs angenommen 
wird. Die betrachtete Problemstellung ist verwandt mit 
der Problemstellung der indefiniten quadratischen Opti- 
mierung. Fiir diese Probleme ist jedes lokale Optimum 
auch global optimal und die Optimall6sung liefert zu- 
n/ichst eine obere Schranke ffir unser Ausgangsproblem. 
Durch ein ,,Ranking" der Ecken des Quadratischen Pro- 
gramms erhalten wir dann die Optimall6sung ftir das 
pseudo-konvexe Transportproblem. 
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1. Introduction 

The objective to attain optimum level of efficiency in ev- 
ery sphere of activity has given rise to fractional program- 
ming. Examples are many: optimizing productivity of 
material in industry plant [3], maximizing ratio of return 
and cost in resource allocation problems [11], of profit per 
unit of time in cargo loading problem [10], of expected 
return and risk in portfolio selection problem [20], etc. 
One can find a galaxy of such problems in the review 
prepared by Schiable [15]. 

Depending on the nature of the functions whose ratios 
are to be optimized, different types of fractional programs 
arise. As for example where the ratio of linear functions is 
optimized one requires to develop a linear fractional pro- 
grams. On the other hand he would deal with a quadratic 
or convex-concave fractional programs when the ratio of 
quadratic functions or convex-concave functions is opti- 
mized. Programs of the latter type are termed in the liter- 
ature as non-concave fractional programs. 

It is observed that most of the algorithms known so far 
solve linear or more generally concave fractional pro- 
grams as discussed by Schiable [16]. And to a much lesser 
degree solution methods are available for non-concave 
fractional programs where the ratio of two concave, two 
convex or the ratio of a convex and a concave function is 
to be maximized [l 6]. This paper develops an algorithm 
for non-concave fractional program of convex-concave 
type. 

Section 2 gives the mathematical model of the problem 
and its practical application, while Sect. 3 discusses the 
limitations of the available methods and the approach 
followed. The last section develops the theory and the 
algorithm. 
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2. Problem and practical application 

Mathematical model of the problem considered here is: 
( cT  x -~-0 0 (DT X +fi)  

Max Z(X) = (P 1) 
x~s (ET X +e) 

where, 

S = { x l j e R " " : 2 x i j = a , ;  ieI;  ~.xl j=bj,  j e J ;  xij>_O} 
3 I 

X = (xlj};  C = {cij}; D = {dlj}; E =-- {eli } 
are m n x  I vectors ( c r x  +e)>O, (DrX+[1)>O, 
(ErX + e) > 0 for all X E S 

(CT X ~-r and (DT X +[1) 
are of non-conflicting nature (2) 

This model is expected to have potential applications 
in many practical situations. Selection of retailers is one 
such situation which is described below: 

Consider the set I of government agencies and a set J 
of wholesalers who receive goods from these agencies and 
in turn supply goods to the retailers Rij. 
Let dlj be the per unit return of the jth wholesaler on 

goods received from the ith agency, 
eli be the per unit transportation cost (or deprecia- 

tion) of the goods received by the jth wholesaler 
from the ith agency, which in turn are supplied to 
retailer R~j, 

c~j be the per unit profit of the retailer R~j per unit 
earnings of the wholesalers, 

xlj be the quantity received by the jth wholesaler 
from the ith government agency which is in turn 
supplied to retailer Rij. 

Clearly, ( ~  ~ c,, x@ and (/~ ~ d,, x@ will increase or 

decrease together. 
Aim is to decide which retailers R~j are advisible to be 

allowed to function so as to maximize the total profit of 
the retailers per unit of net transportation cost (or depre- 
ciation). 

That is, 

Max 
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after knowing a feasible point X a direction d is deter- 
mined and a one-dimensional optimization problem is 
solved to find the step length 2(>0) such that 
3~ = X + 2 d is a better feasible point. The process is re- 
peated as often as possible. But since optimal solution to 
(P1) as shown in section 4, lies at an extreme point of S, 
one can avoid the search for a feasible direction and do 
away with solving a one-dimensional optimization prob- 
lem to find step length 2 (> 0) in the chosen direction. In 
problems of the type (P1) one is motivated to move from 
one extreme point to a better extreme point and continue 
the systematic ranking of the extreme points of S till opti- 

(1) mal solution is obtained. 
One could also think of applying Gould's [1, 2] 

methodology involving simple differentiable quadratic 
penalty functions p (X, v) defined as: 

1 1 
p(X, v) = f (X)  + 27v Y'gi(X)Z + ~-v y [min (0, 91(X))] 2 

11 I2 

in minimization of smooth non-linear functions Minf(X) 
x 

subject to general constraints: gi (X) = 0, i ~ 11 and gi (X) 
>_O,i~I 2. 

These methods though known for many years, have 
however been disregarded on account of natural ill-con- 
ditioning of the penalty function when the penalty param- 
eter shrinks to zero. Since linear constraints can be effi- 
ciently handled by various other methods, their incorpo- 
ration in the penalty function is not particularly useful. 

Standard 'barrier function methods' are also not advis- 
able, as the constraints in (P1) are equality constraints. 

Higgins and Polak's [4] approach, which is an exten- 
sion of the Von Hohenbalken's algorithm [18] obtains the 
global minimum solution for a pseudoconvex function. 
This solution strategy can not be applied to solve the 
problem (PI) as it deals with maximization of a pseudo- 
convex function over a convex compact polytope where 
local maximum point may not be global. As the known 
methods appear to be of little use for obtaining global 
maximum solution of a non-concave fractional program 
exploiting transportation structure of the constraint set 
this paper develops a novel approach for its solution 
based upon systematic ranking of extreme point solu- 
tions. 

The solution will tell as to which retailers are desirable to 
be kept functioning. In the current case, one of the best set 
of (m + n -  1) retailers would be found whose functioning 
will maximize the aforesaid objective function. 

3. Available methods, limitations and our approach 

The problem (P1) being a non-linear programming prob- 
lem can be solved by methods of feasible directions like 
Zoutendijk's method, Rosen's gradient method, Wolfe's 
method of reduced gradient, Zangwill's convex-simplex 
method etc. [19]. In these feasible direction algorithms, 

4. Theoretical development 

Definition. Non-conflicting functions. Functions f and g 
are said to be of non-conflicting nature, i f  

f (X 1) > f ( X  2) ~ g(X 1) > g(X2). 

It can be proved that for affine functions (C r X + c 0 and 
(DT X +[1) this condition holds iff D r = 2C T, where 2 > O. 

The problem (P1) therefore, gets restructured to (PJ)': 

( c  r x + ~) (,t c r x + fl) 
(PI)': Max Z(X) = 

x ~ S (E r X + e) 

(P1)' is closely related to the problem (P2) defined as: 

(P2): Max U(X) = (CT X) +~)(2 cT x +fl). 
X~S 
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Some remarks 

(i). U (X) is a convex function and therefore the maximum 
value in (P2) is attainable at an extreme point of S [I 3, 19]. 
This motivates the investigation of extreme point solu- 
tions of S while finding the optimal solutions of (P2). The 
local maximum point reached by the solution methodol- 
ogy for (P2) will be the global maximum point as U (X) is 
pseudoconcave as well under the assumption (1) specified 
in section 2 [13, 19]. 

(C r X + ~) (2 C r X + fl) under the assump- 
(ii). Z (X) = (E r X + e) 

tion (1) is pseudoconvex [13, 19]. This pseudoconvex 
function Z(X) defined on a polyhedral region S attains 
its maximum on a vertex, since it is known that if 
<1 Z (X)= 0 at an interior point, then X is a minimum 
point. So unless Z is constant, a maximun5 must happen 
on the boundary. Applying the same idea to faces and 
edges, the maximum is located at a vertex of the polyhe- 
dron S. This motivates the systematic scanning of extreme 
points of S for obtaining an optimal solution of (P1)'. 

u(x) 
Off). Z (X) < - -  for all X ~ S. 

r 

where r = Min (E T X q- e). X~S 
Notations 

S: the set of extreme points of S, 
&: the set of ith best extreme point solutions of (P2), 
Ui - U (X), X E Si. 

Definition. k th best extreme point solution of (P 2). X k is a 

k th best extreme point solution of (P2) / f  

U(X k)-~Uk=Max U ( X ) : X e g  S~ . 
i 

The~ 1" If Uk+l I X~i~l 1 Uk < M a x  Z(X): Sj < - -  
r _ r ' 

then the optimal value of Z(X) in (PI)' is 

Max[Z(X):  X ~ U 

Proof For s > k + 1, 

U~ U~§ 
r r 

_< Max (X): S~ (by the hypothesis). 

Also for all X e S~, Z (X) _< U~ 
r 

) <] < Max (X): X S i . 

Therefore, no extreme point of S after the (k + 1) th best 
extreme point solution of (P2) can yield objective function 

value of (P1)' better than Max [Z(X): X E U Si]. Thus, 
i = 1  
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M a x [ Z ( X ) : X e U  ~=1 Sit is the ~ value ~ the ~ 

tive function in (P1)'. k 

I f M a x I Z ( X ) : X ~ i ? l S i l  =Z(X~) , thenX  v is the op- 

timal solution of (PI)'. 

Algorithm for finding global optimal solution 
of problem (P1)' 

Global optimal solution of (P1)' can be obtained by suc- 
cessively tightening the bounds on its objective function 
value. This is achieved by ranking the extreme point solu- 
tions of problem (P2) is descending order of U (X) values 
[see appendix]. 

The steps involved in the algorithm are described as 
under: 

Step 1: Solve Min (ErX + e) to find its minimum value r. XsS 
Step 2." Find S~, the set of optimal solutions of (P2) [5-8]. 

If, U~ = Max [Z (X): X s S~] - Z (X 1) (say), stop. X ~ ~ $1 
r 

is an optimal solution of (P1)'. Otherwise go to step 3. 

Step 3." (k > 2). Find the set S k of the k th best extreme 
point solutions of (P2) [see appendix]. 

If either (a) S , r  and Uk < Max Z(X): X e  i 7 - -  Si 

- Z(Xv) or (b) ifS k = 0, U~+I < U~, (=  1, 2 . . . . .  k - 2 ,  and 

Uk_~ > Max (X): X e i r S i - Z ( X n ) ,  then go to 

step 4. 

Otherwise, replace k by k + 1 and return to step 3. 

Step 4." Algorithm ends yielding an optimal solution X v if 
3 (a) holds, or X n if 3 (b) holds. 

Convergence of the algorithm 

Algorithm obtains the optimal solution of (PI)' in a finite 
number of iterations as only the extreme point solutions 
of (P2) are investigated systematically. 

Appendix: Ranking of extreme point solutions of (P2) 

Step 1." To find optimal basic feasible solutions (OBFS's) 
of (P2) 

The set Slof the optimal basic feasible solutions of (P2) 
can be obtained by one of the four methods developed by 
Swarup [5-8]. 

If B] is the set of basic cells in a basic feasible solution 
of (P2), then this will be an optimal solution if 

R~.ij<_ 0 V cells (i,j) r B~ 
= 0 V cells (i,j) ~ B~ 
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where 

Rll, ij ---- elj )c (Zlj - c~j) 2 -- 2 f]  (Zij -- cij ) -- gt (Zlj _ clj) 

u~ + vj = c~j V cells (i, j)  e B] 

u~ + vj = Z~j V cells (i, j )  4~ B] 

and, 

f ]  = value of  (C r X + c 0 at the current  basic feasible solu- 
t ion cor responding  to B].  

g] = value of (2 C r X  +fl) at the current  basic feasible 
solution cor responding  to B] .  

0ij is the level at which the non-basic  cell (i,j) enters the 
basis B] ,  replacing some basic cell e B~. 

Note  that  u~, vj, 0~j are determined by using the stan- 
dard  Stepping-Stone a lgor i thm for balanced t ranspor ta-  
t ion problem. 

If 

Max [ M a x  (UI +O~jR ~ ,j), ..., Max (Uk +OiiR~,ij) 1 
k < i , j )  ~H1 ' <i,j) ~l~k 

= Max_ (gp-l-OijRlp, lj) 
(i,j> ~Hp 

O,t Rp,s~ (say), =Up+ h 

then entry of  (s, t) d~ B h into the set of  basic cells, Bhp, will 
yield a (k + 1) th best basic feasible solution with (k + 1) th 
best value in (P2) being Up "~- Ost Rp,h st" 
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Step 2: To find the 2nd best basic feasible solution of  (P2) 

Basic concepts of finding the 2nd best basic feasible solu- 
tion of (P2) are similar to those given in [9, 12, 14, 17]. 

Const ruc t  the set H 1 defined as follows: 

H 1 = [..) {(i,J): R l 1,ij < O, (i,j) ~ B] }. 
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feasible solution. 

Step 3 : To find the (k + 1) th best basic feasible solutions 
of  (P2), (k > 2) [9, 12, 14, 171 

Supposing that  the basic feasible solutions of  (P2) up to 
the k th best solution have been obtained, and B~ be the set 
of  basic cells in a k th best basic feasible solution of  (P2). 

Const ruc t  the set Hk defined as: 

Hk :-- U {i,J): Rtk, iJ < O, (i,j) ~BZk, B~ is the set of basic cells 
1 

in a k th best basic feasible solution of  (P2)}. 
Find 

M a x [  M a x  (UI +O~jR],~), ..., Max (U~ +O~jR~.~j)] 
L<i,j> ~H1 (i,j> ~Itk 

where 
k 

l~q=Hq\{(i ,J):(i , j)~Ha,(i ,J)E ~_) B ~ t , q = l , . . . , k - - 1 ,  
i = q + l  ) 

H k  ~ H k  �9 
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